Supplementary Materials for # Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain Saien Xie, Lijie Tu,* Yimo Han,* Lujie Huang, Kibum Kang, Ka Un Lao, Preeti Poddar, Chibeom Park, David A. Muller, Robert A. DiStasio Jr., Jiwoong Park[†] *These authors contributed equally to this work. †Corresponding author. Email: jwpark@uchicago.edu Published 9 March 2018, *Science* **359**, 1131 (2018) DOI: 10.1126/science.aao5360 #### This PDF file includes: Materials and Methods Supplementary Text Figs. S1 to S13 Table S1 References #### **Materials and Methods** ### Modulated MOCVD growth of monolayer TMD superlattices The synthesis of monolayer TMD superlattices was performed in a 2-inch quartz tube furnace (Fig. S1A). Tungsten hexacarbonyl (THC), molybdenum hexacarbonyl (MHC), diethyl sulfide (DES), and dimethyl selenide (DMSe) were selected as chemical precursors for W, Mo, S and Se, respectively. THC and MHC were kept in bubblers at a constant pressure of 800 Torr and introduced into the furnace with Ar as the carrier gas at room temperature. All precursors were introduced into the growth furnace with individual mass flow controllers (MFCs) regulating their flow rates. The growth of the superlattices was kept at a constant temperature of 600 °C and a total pressure of 2 Torr throughout. Flow rates of all precursors were kept constant during the growth except for the chalcogens: 20 sccm of THC or MHC with Ar as the carrier gas, 1 sccm H₂ and 350 sccm Ar, 0.3 sccm DES, and 0.4 sccm DMSe. The flow of the chalcogen precursors was alternated with breaks (typically 2 min) in between for purging purposes (see schematic in Fig. S1B). The growth time of different superlattices is summarized in Table S1, and relative width of the superlattices ($\rho = d_{WS2}/d_{WSe2}$) is proportional to the relative growth time (t_{WS2}/t_{WSe2}), as shown Fig. S1D. The stable growth environment is crucial for coherent superlattice growth. In contrast, the synthesis with a temperature decrease (3 min, down to 300 °C) between different TMD growths result in heterostructures without lattice coherence. These heterostructures show incoherent diffraction patterns (Fig. 2E and Fig. S3 right), no PL tuning (Fig. S10 left), and no out-of-plane rippling (Fig. S12D). After the superlattice growth process, the furnace was naturally cooled down to room temperature in an inert environment with a constant flow of Ar. NaCl was placed at the upstream region of the furnace. The main growth substrate used was 285 nm SiO₂/Si. For more discussion of our MOCVD process, see ref. 22. #### TEM analysis Sample preparation: The monolayer TMD superlattice was spin-coated with PMMA A4, and then the substrate was etched in KOH 1M solution. After being rinsed in deionized water for three times, the PMMA supported superlattice was transferred to a TEM grid with 10 nm thick SiN windows, and the chip was annealed in an ultra-high vacuum (10⁻⁷ Torr) at 350 °C for 3 hours to remove the PMMA. SAED and DF-TEM: SAED patterns were taken using an FEI Tecnai T12 Spirit, operated at 80 kV. The selective area aperture has a diameter of 280 nm. The dark-field TEM images are taken by selecting specific diffraction spots (39). *ADF-STEM*: ADF-STEM imaging was performed using a FEI TITAN operated at 120 kV with a ~15 pA probe current. A 30 mrad convergence angle and a ~40 mrad inner collection angle were used for all ADF-STEM images, whose contrast is proportional to Z^{γ} , where Z is the atomic number and $1.3 < \gamma < 2$. *EMPAD*: Lattice spacing and rotation maps were performed using an electron microscope pixel array detector (EMPAD) (25), which is a high-speed, high dynamic range diffraction camera with the sensitivity to measure a diffraction pattern from a single atom (40). We used a 120-kV electron beam with a 0.5 mrad convergence angle to record diffraction patterns at every point in 2D real space scan to build up a 4-dimensional phase space map. By measuring the center of the second order diffraction spots using center of mass calculation, we mapped reciprocal lattice vectors for every scan position in real space. The inverse of these vectors provided the real-space lattice spacing maps shown in Fig. 2F (the lattice spacing in the armchair direction was multiplied by $\sqrt{3}$ to get the normalized a_{ij} , therefore makes the unstrained hexagonal lattice have same a_{ij} and a_{\perp}). The rotation map in Fig. 2G was calculated by measuring the rotation angles of the reciprocal lattice vectors as a function of real-space scan positions. The color scale was normalized to the mean value of the entire sample region. (1 for the lattice constant map and 0 for the rotation map). #### Photoluminescence measurements The PL spectra were acquired using Horiba Lab RAM HR Evolution confocal Raman microscope, with a 532-nm laser excitation under ambient conditions. The PL images were taken with a widefield PL microscope using band pass filters with 10 nm bandwidth, and the center photon energies of 1.75 eV, 1.82 eV, 1.91 eV, and 2.00 eV, respectively (41). # Device fabrication, electrical transport and electroluminescence measurements All devices were fabricated with as-grown heterostructures on 285 nm SiO₂/Si growth substrates. We first defined the source and drain electrodes using standard e-beam lithography, followed by e-beam evaporation of 0.5 nm Ti/50 nm Au. After lifting off using acetone, we defined the device channel and etched the unwanted TMD regions with SF₆ and O₂ plasma etching. All electrical measurements were performed under ambient conditions using a custom-built probe station with a Keysight B1500A Semiconductor Device Analyzer. EL measurements were carried out using the widefield PL microscope used for PL measurement. # **Supplementary Text** # Device applications of WS₂/WSe₂ heterostructures Our 2D superlattices have dislocation-free heterointerfaces with precisely controlled nanoscale supercell dimensions. These two advanced properties are crucial for producing practical devices that are difficult to produce otherwise. To demonstrate this, we have fabricated and examined three types of devices based on our coherent heterostructures—p-n diodes, LEDs, and double heterostructure (DH) transistors, where the coherent heterointerfaces were generated between WS₂ (n-type, in general) and WSe₂ (p-type). High-performance p-n diodes: We have successfully fabricated electrical devices that include only one WSe₂-WS₂ (p-n) heterojunction between two metal electrodes (Fig. S8A, inset; see supplementary materials for fabrication methods). A representative p-n diode shows high forward-bias current (>10 μ A) and low reverse-bias current (~10 pA), producing a high rectification ratio (>10⁶), as illustrated in Fig. S8A. The high performance for our p-n diodes is consistent with the dislocation-free coherent heterointerfaces, as the coherent interfaces could minimize the scattering of carriers by dislocations, resulting in a higher electrical conductivity under forward bias. Furthermore, the defect-assisted hopping transport of charge carriers will be minimized, which accounts for a lower conductivity under reverse bias. Electroluminescence in p-n diodes (LEDs): We further observed strong electroluminescence (EL) from the p-n diodes. The false-color EL image overlaid on the optical micrograph of the p-n heterostructure device confirms that the luminescence originates from the heterointerface between WS₂ and WSe₂ (Fig. S8B, interface marked with the dashed line). The EL is observed under the forward-bias condition, and its intensity dramatically increases with the injected current (I). For example, the EL from the device in Fig. S8C increases by three orders of magnitude when *I* increases only by a factor of 5 (inset, Fig. S8C). The EL spectrum shows a peak similar to the PL peak from WS₂, which suggests that the light emission is likely to originate from the *e-h* recombination within WS₂. These observed features for EL and the back gate dependence (Fig. S8D) matches very well with the expected band alignment (Fig. S8D inset). The EL spectra at more positive gate bias (-30V) show multiple peaks suggesting that electrons (injected from WS₂ side) and holes (injected from WSe₂ side) recombine near the WS₂-WSe₂ heterointerface. However, it produces only a single peak from WS₂ under a more positive gate bias (-60V) as the hole carrier density increases in our device and dominates the current flow across the junction (into WS₂). The high current needed for EL and the efficient radiative recombination both require the absence of dislocations. Therefore, the observation of EL suggests that the coherent heterointerface is crucial for high-performance LEDs. We note that all our devices are directly fabricated on the SiO₂/Si growth substrate without any encapsulation and the EL measurements were performed under ambient conditions. This suggests that its performance (brightness and stability) may be further improved, which calls for more comprehensive EL studies in the future to fully understand and optimize the optoelectronic properties of our coherent heterostructures. Double heterostructure (DH) transistors: We successfully fabricated 2D double heterostructure devices, based on double coherent heterojunctions (WSe₂-WS₂-WSe₂) with the width of middle part (d_{ws2}) very narrow and precisely controlled. The schematic and band diagram are depicted in Fig. S9A, together with an SEM image of a representative DH device with d_{ws2} \approx 90 nm. Our DH devices (over 10 of such devices were studied) show symmetric, nonlinear *I-V* characteristics with no rectification behavior (Fig. S9B), as expected from their symmetric configuration. Their *p*-type transport is consistent with the band diagram shown in Fig. S9A, where the hole is the main carrier and WS₂ region acts as a barrier. As these DH devices are conceptually similar
to double-diodes connected in opposite directions, they may conduct only when the middle region is narrow with the device conductivity strongly dependent on d_{WS2} . This is indeed what we observe from our devices. (Fig S9C) The device with $d_{WS2} \approx 70$ nm is approximately one order of magnitude more conductive than the device with $d_{WS2} \approx 90$ nm, and we were unable to observe conduction for devices with d_{WS2} larger than 130 nm. This is also consistent with the depletion width of ~ 320 nm for TMD lateral heterostructures reported (16). Our demonstration of double heterostructures provides an example for building devices with designed band structures with excellent dimension control, which would stimulate further exploration of complex device applications. #### Effective negative Poisson's effect in omnidirectional coherent epitaxy Below, we explain the symmetry and lattice isotropy in the superlattice grown by omnidirectional coherent epitaxy, using a symmetry analysis. We use a square lattice to illustrate the symmetry constraint for simplicity. Conventional unidirectional coherent epitaxy only requires matched a_{ij} while a_{\perp} is free of any constraints, thus a_{\perp} of small (large) lattice becomes even smaller (larger), corresponding to $\delta_{\perp} > \Delta$ for positive Poisson's ratio (Fig. S6A). Therefore, the resulting heterostructure shows a different symmetry (rectangular) than that of the original crystal (square). However, in omnidirectional coherent epitaxy, the epilayers grown in all directions connect to each other without dislocation. As a result, the final heterostructure maintains the same symmetry with that of the original crystal, showing $\delta_{\perp} = 0$ (Fig. S6B). Similar results for our WS₂/WSe₂ superlattices is illustrated in Fig. 2I. The isotropic lattice constants result in an effectively negative Poisson's effect, regardless of the intrinsic Poisson's ratios of each component, and is universal for any coherent omnidirectional epitaxy system. # Coarse-grained simulations of the TMD superlattice To study the equilibrium state of the entire coherent TMD superlattice shown in Fig. 2, we developed and employed a coarse-grained force-field model that accounts for nearest-neighbor bonding and angular interactions. In this approach, the atom types are "dressed W atoms" and can either be [WS₂] or [WSe₂] units centered at the corresponding W atomic position in the 2D superlattice (depicted as red or blue circles, respectively, in Fig. S7A and S7B). The total potential energy expression employed for the superlattice is $E_{latt} = \frac{1}{2} \sum_{bonds} k_b (r - r_0)^2 + \frac{1}{2} \sum_{angles} k_{\theta} (\theta - \theta_0)^2$, in which the first term represents a harmonic bond potential (with k_b and r_0 representing the bond force constant and equilibrium bond distance, respectively) and the second term a harmonic angular potential (with k_{θ} and θ_0 representing the angular force constant and equilibrium angle, respectively). Figs. S7A and S7B summarize the different types of bond and angle terms encountered in our energy expression for TMD superlattices. In all of our simulations, the central (seed) triangle consists of [WS₂] atom types (with a side length of 20 dressed atoms). The superlattice is then constructed via the addition of alternating TMD bands, the next of which is 4 (or 8) layers of [WSe₂] atom types, followed by 5 (or 10) layers of [WS₂] atom types, etc. until the model superlattice consists of 14 total TMD bands (for direct comparison with the experimental superlattice considered in Fig. 2). In this initial configuration, all bond lengths were set to a value of r = 3.22 Å, which is the mean of the experimental W—W distances in pure WS₂ ($r_0 = 3.15$ Å) and WSe₂ ($r_0 = 3.29$ Å) monolayers. For a given replica of the system (with a minimum of 6 replicas is always used) each of the initial positions of the dressed atoms are randomized (up to 5% of the initial bond distance) before E_{latt} is minimized using second-order damped dynamics (with a damping parameter of γ = 0.2 and fictitious time step of δt = 0.004, which have been optimized to ensure rapid convergence to the energetic minimum). To parameterize the bond terms, we utilized the 2D Young's moduli for pure WS₂ ($Y_{2D} = 140$ N/m) and WSe₂ ($Y_{2D} = 116$ N/m) monolayers obtained from highly accurate density functional theory calculations (42, 43) to set $k_b = 1.2$ Å⁻² for [WS₂]—[WS₂] and $k_b = 1.0$ Å⁻² for [WSe₂]—[WSe₂]. For dressed atoms at the interface (in which [WSe₂]—[WS₂] or [WS₂]—[WSe₂]), the appropriate k_b and r_0 are chosen to satisfy the outward growth mechanism of the TMD superlattice (see Fig. S7B for a graphical depiction). Angular interactions were included to reflect the shear stiffness inside the TMD superlattice. In this regard, the larger the shear modulus is, the stronger is the tendency of the superlattice to maintain an equilateral triangular structure. Since the differential shear moduli for these TMD monolayers are unknown, we have studied a series of k_{θ} ranging from 0 rad⁻² (0 deg⁻², no angular interactions) to 40 rad⁻² (0.012 deg⁻², very strong angular interactions) with $\theta_0 = \pi/3$ rad = 60° in all cases. Quite importantly, we find that the inclusion of angular interactions is key to predicting the spatial patterns and histograms of both the parallel (a_{1/1}) and perpendicular (a₁) lattice constants (see Fig. S7C). With an intermediate-range value of k_{θ} = 20 rad⁻² (0.006 deg⁻²), we find excellent agreement with the experimental results for a_{1/1} and a₁, as shown in Figs. 2F, 2H, and 2J. # Energetics governing the flat-rippled configuration space in strained WSe₂ monolayers The model used to explore the energetics of the flat-rippled configuration space in a strained WSe₂ monolayer grown on an α -SiO₂ substrate was assembled using the QuantumWise nanoscience simulation software package (see Fig. S11A) (44). For consistency with the dimensions of the ripples observed from our TMD superlattices (see Fig. 4), we chose to model a WSe₂ monolayer ripple with a wavelength of $\lambda \approx 30$ nm and a width of dwSe₂ ≈ 10 nm (corresponding to the x- and y-axes, respectively, in Fig. S11A). For the initial flat WSe₂ monolayer configuration, we started with an equilibrium WSe₂ monolayer consisting of 3,456 WSe₂ units with dimensions of x = 31.51 nm and y = 10.23 nm. Applying an isotropic axial strain of 4% in the x-direction (representing the lattice mismatch of $\Delta \approx 4\%$ between WSe₂ and WS₂ monolayers) coupled with transversal expansion in the y-direction (governed by Poisson's ratio of v = 0.19 for a WSe₂ monolayer (42, 43)), we arrived at our initial flat (and compressively strained) WSe₂ monolayer configuration with dimensions of x = 30.25 nm and y = 10.31 nm. We then proceeded to assemble the underlying α -SiO₂ substrate (with an interlayer separation of R = 3.5 Å, reflecting a typical separation distance between van der Waals (vdW) heterostructures (5)) consisting of 42,336 SiO₂ units with dimensions of x = 30.27 nm and y = 10.32 nm (chosen to minimize the periodic mismatch between the WSe₂ monolayer and the substrate). In the z-direction, we utilized 6 SiO₂ layers to account for the bulk properties of the SiO₂ substrate. As a result, our model for exploring the flat-rippled configuration space in this system contains a total of 137,376 atoms (with 10,368 atoms in the WSe₂ monolayer and 127,008 atoms in the α -SiO₂ substrate). To introduce a ripple in the WSe_2 monolayer with height A (see Figs. 4B and S11A), we considered the series of (trough-to-trough) shapes formed by the sinusoidal family of functions $(\sin^n(x))$ with n=2,4,8. In particular, these ripples were created by inducing a vertical displacement (*i.e.*, a z-coordinate change) in each atom contained in the WSe₂ monolayer based on its corresponding horizontal position (or x-coordinate) as follows: (i) $$z = A\sin^2\left(\frac{\pi x}{\lambda}\right) = \frac{A}{2} + \frac{A}{2}\sin\left(\frac{2\pi x}{\lambda} - \frac{\pi}{2}\right).$$ (ii) $$z = A \sin^4\left(\frac{\pi x}{\lambda}\right) = A \sin^2\left(\frac{\pi x}{\lambda}\right) - \frac{A}{4} \sin^2\left(\frac{2\pi x}{\lambda}\right)$$. (iii) $$z = A\sin^{8}\left(\frac{\pi x}{\lambda}\right) = A\sin^{4}\left(\frac{\pi x}{\lambda}\right) - \frac{A}{2}\sin^{2}\left(\frac{\pi x}{\lambda}\right)\sin^{2}\left(\frac{2\pi x}{\lambda}\right) + \frac{A}{16}\sin^{4}\left(\frac{2\pi x}{\lambda}\right).$$ These sinusoidal transformations govern the shape (or profile) of the ripple and are more compactly represented by S_1 , S_2 , and S_4 , respectively, throughout the text. Elastic energy for the WSe₂ monolayer: The elastic energy (E_{el}) for the WSe₂ monolayer as a function of the ripple height, A, for ripple shapes generated using the sinusoidal transformations (defined above) was computed using continuum mechanics as a sum of the stretching (E_{s}) and bending (E_{b}) energy components (defined below), each of which is depicted in Fig. S11B. In this work, we adopted a harmonic potential energy expression (*i.e.*, Hooke's Law) to describe E_s as follows: $E_s = \frac{1}{2} Y_{2D} d_{WSe2} \frac{(L-L_0)^2}{L_0}$, in which Y_{2D} is the 2D Young's modulus (or 2D elastic stiffness) for a WSe₂ monolayer and $dL \equiv L - L_0$ is the amount by which the monolayer is stretched (or compressed) relative to the relaxed equilibrium length, L_0 . Since the WSe₂ monolayer is comprised of only 3 atomistic layers, E_s for this system is more appropriately described by Y_{2D} instead of the 3D Young's modulus (Y_{3D}) as was found for other TMD systems such as MoS₂ as well as truly 2D materials such as graphene (45, 46). Throughout this work, we utilize the value of $Y_{2D} = 116$ N/m, which
was obtained from highly accurate density functional theory calculations (42, 43). For E_b we employed the following energy expression based on Euler buckling theory (47, 48): $E_b = \frac{1}{2}Bd_{WSe2}\int dxz''(x)^2$, in which B is the bending stiffness and z''(x) is the second derivative of the ripple shape with respect to x (the stretching/compression direction). We note here that significant controversy still exists in the literature regarding the use of classical shell/plate theory for B in 2D materials (such as TMD monolayers) as this approach suffers from the large uncertainty necessarily present in any definition of "thickness" in such ultra-thin nanofilms (45, 49–51). Throughout this work, we completely sidestep this issue by utilizing a recent experimentally derived value of B = 12.4 eV (corresponding to WSe₂ with zigzag chirality (52)) and therefore avoid the use of any measure of "thickness" in our energy expressions. Since the initial flat WSe₂ monolayer has been compressed by 4% (corresponding to the lattice mismatch with WS₂), this configuration starts with a relatively large $E_s \approx 50$ meV per WSe₂ while $E_b = 0$ meV (see Fig. S11B). As the ripple forms and A increases, L increases towards L_0 releasing the compression strain and steadily decreasing E_s ; although this is accompanied by a simultaneous monotonic increase in E_b , the total $E_{el} = E_s + E_b$ is still dominated by E_s over the entire range of A before the energetic minimum for all ripple shapes considered herein. The location of the minimum in E_{el} is therefore primarily dictated by the minimum in E_s , although E_b can play a more substantive role and therefore shift the minimum to lower A values for ripple shapes induced by higher-order (and therefore more perturbative) sinusoidal transformations. For A values beyond the minimum, both E_s and E_b steadily increase as L is now larger than L_0 (corresponding to a stretched monolayer) and the degree of bending is becoming increasingly more severe. Interlayer van der Waals (vdW) energy: To complete our description of the energetics governing the flat-rippled configuration space, we also account for the non-bonded and long-range vdW interactions between the WSe₂ monolayer and the underlying SiO₂ substrate. Here we utilized two all-atom quantum mechanical vdW corrections (both the so-called D3 method (53, 54) with modified Becke-Johnson (BJ) damping (55) and a renormalized version of the "atoms-in-solids" variant (56, 57) of the Tkatchenko-Scheffler (TS-vdW) method (58) with Tang-Toennies (TT) damping (59)). In the D3 approach, the chemical environment (via the corresponding coordination number) of each atom has been accounted for in both the pairwise two-body (2B) vdW interactions, $E_{vdW-2B} = -\frac{1}{2} \sum_{AB} \sum_{n=6,8} s_n \frac{C_n^{AB}}{r_{AB}^n} f_{d,n}^{BJ}(r_{AB})$, and the beyond-pairwise threebody (3B) vdW interactions, $E_{vdW-3B} = \frac{1}{6} \sum_{ABC} \frac{C_9^{ABC}(3\cos\theta_a\cos\theta_b\cos\theta_c+1)}{(r_{AB}r_{BC}r_{CA})^3} f_{d,3}^{BJ}(r_{ABC})$, via the isotropic *n*-th order dispersion coefficients $(C_6^{AB}, C_8^{AB}, C_9^{ABC})$. In these expressions, r_{AB} is the distance between atoms A and B, θ_a , θ_b , θ_c are the interior angles formed by the ABC triangle, and the scaling factors were set to $s_6 = 1.0$ and $s_8 = 0.3589$ throughout. To more accurately and reliably describe the vdW interactions in such complex nanostructures, we also utilized a renormalized version of the "atoms-in-solids" variant of TS-vdW, in which the electrodynamic screening from the environment of each atom has been accounted for via the Clausius-Mossotti equation and the corresponding experimental bulk dielectric functions (60), the Thomas-Reiche-Kuhn sum rule has been satisfied by all frequency-dependent atomic polarizabilities, and both 2B vdW interactions, $E_{vdW-2B} = -\frac{1}{2} \sum_{AB} \frac{C_6^{\prime AB}}{r_{AB}^6} f_{d,6}^{TT}(r_{AB})$, and 3B vdW interactions, $E_{vdW-3B} =$ $\frac{1}{6}\sum_{ABC}\frac{c_9^{\prime ABC}(3cos\theta_acos\theta_bcos\theta_c+1)}{(r_{AB}r_{BC}r_{CA})^3}f_{d,3}^{TT}(r_{ABC}), \text{ were included with TT damping } via \text{ the isotropic } n\text{-th}$ order dispersion coefficients ($C_6^{\prime AB}$ and $C_9^{\prime ABC}$). All vdW calculations were performed using an in-house program that accounts for periodic boundary conditions (in the x- and y-directions) in both the atomic coordination number determination as well as the 2B and 3B interlayer vdW energy computations. Further modifications of the program were required to correctly deal with the different intrinsic periodicities of the WSe₂ monolayer and SiO₂ substrate. In the initial flat WSe₂ monolayer, the interlayer vdW binding energy is largest (most negative) as the monolayer in this configuration is in closest contact with the underlying substrate (see Fig. S11B). As the ripple forms and A increases, the magnitudes of both the attractive E_{vdW-2B} and repulsive E_{vdW-3B} terms decrease, becoming less attractive and less repulsive, respectively. Since $|E_{vdW-3B}|$ is only about 1/3 of $|E_{vdW-2B}|$ (see Fig. S11B), their sum $E_{vdW} = E_{vdW-2B} + E_{vdW-3B}$ still remains attractive, although it becomes less attractive with increasing A. As expected, the overall decay rate (as a function of A) in the interlayer vdW binding energy decreases for ripple shapes generated with increasingly more perturbative (higher-order) sinusoidal transformations, reflecting the fact that more of the TMD monolayer is in close contact with the substrate in such ripple profiles. Total energy analysis: The combination of E_{el} and E_{vdW} provides our total energy expression (E_{tot} = E_{el} + E_{vdW}), which is plotted as a function of A for the aforementioned sinusoidal ripple shapes in Fig. S11B (wherein E_{tot} was computed with respect to the flat monolayer configuration). Since the energetic contributions from E_{el} and E_{vdW} in this system are competitive in nature and similar in magnitude, their combination predicts a distinct energetic barrier separating the initial flat (and highly strained) configuration with the minimum-energy rippled configurations emerging in the range of A = 2 - 4 nm. Here we find that the rippled configurations with higher-order sinusoidal shapes are most stable, with a relative energy range that can be tuned with respect to the flat configuration. In this regard, the values of A predicted by these simple hybrid macroscopic-microscopic theoretical models are in relatively good agreement with the corresponding experimental measurements (see Fig. 4D). Quite interestingly, the renormalized "atoms-in- solids" variant of TS-vdW, which is a more complete model for treating vdW interactions in such complex nanostructures, predicts that the buckled configurations are more stable than the strained flat configuration for all buckle shapes considered herein. This eliminates the need for more aggressive bending in the ML and is also accompanied by more accessible energetic barriers separating the rippled and flat states, both findings of which are completely consistent with our experimental observations. #### Estimation of critical thickness The critical thickness of WS₂/WS₂ epitaxial system based on People-Bean model (35) is given by $$h_c \simeq \frac{1-\nu}{1+\nu} \frac{1}{16\pi\sqrt{2}} \frac{b^2}{a} \frac{1}{\Delta^2} \ln\left[\frac{h_c}{b}\right]$$ Where a=0.329 nm is the lattice constant of WSe₂. b is the length of Burgers vector, and we take b=a=0.329 nm as it corresponds to the easiest formed misfit dislocation; v is the Poisson's ratio of WSe₂. The numerical result of the above equation is plotted in Fig. S13, showing a critical thickness of 17 nm (v = -0.2), 9.8 nm (v = 0), and 5.4 nm (v = 0.2) for WS₂/WSe₂ epitaxy system with $\Delta = 4\%$. We note that the People-Bean model is known to overestimate the critical thickness for $\Delta < 6.2\%$ (61). **Fig. S1. Modulated-MOCVD process.** (**A**) Schematic of modulated-MOCVD reactor with individual MFCs that precisely control the flow of all precursors. (**B**) Time sequence of the modulated superlattice growth where the growth time for a supercell {WS₂ and WSe₂} is {tws₂ and twse₂}. (**C**) SEM image of a coherent WSe₂/MoS₂/WS₂ heterostructure. (**D**) Plot of relative widths ($\rho = d_{WS2}/d_{WSe2}$) of superlattices versus relative growth time (tws₂/twse₂) showing a linear dependence (Data of growth time for different superlattices summarized in Table S1). Fig. S2. TEM images of a WS₂/WSe₂ superlattice. (A) Bright-field image of superlattice $\{50 \text{ nm and } 40 \text{ nm}\}$. Inset: diffraction patterns with the first order spots divided into two families of \mathbf{k}_a and \mathbf{k}_b . Scale bar, 500 nm. (B) Dark-field TEM images acquired by collecting from \mathbf{k}_a and \mathbf{k}_b , respectively. The uniform contrast shown in DF (\mathbf{k}_a) suggests that \mathbf{k}_a points towards the W-zigzag direction (39). Fig. S3. SAED patterns of WS₂/WSe₂ heterostructures. Left, enlarged SAED pattern shown in Fig. 2C. Right, the full SAED pattern of an incoherent heterostructure from which Fig. 2E is taken. Fig. S4. Histograms of lattice parameters. (A) Histograms of $a_{//}$ and a_{\perp} for region α (two a_{\perp} peaks centered at 0.996 and 1.008), β (two a_{\perp} peaks centered at 0.996 and 1.008), and γ (two a_{\perp} peaks centered at 0.996 and 1.005). (C) Histogram of lattice rotation of the entire superlattice showing a standard deviation of 0.8 mrad. Fig. S5. Lattice rotation map of an incoherent WS₂/WSe₂ heterostructure. An incoherent WS₂/WSe₂ heterostructure showing arrays of dislocations at the heterointerfaces. Scale bar, 1 μm. **Fig. S6. Schematic of conventional and omnidirectional epitaxy.** (**A**) Schematic of conventional
unidirectional epitaxy and the resulting heterostructure with different symmetry from that of the original crystal. (**B**) Schematic of omnidirectional coherent epitaxy and the resulting heterostructure maintaining the same symmetry of the original crystal. Fig. S7. Coarse-grained simulation of the WS₂/WSe₂ coherent superlattice. (A) Red and blue circles depict the atom types in this system: "dressed W atoms" that can either be [WS₂] or [WSe₂] units. There are four types of bond terms, depending on the dressed atom types and the interface conditions: [WS₂]—[WSe₂], [WSe₂]—[WSe₂], [WSe₂]—[WSe₂] (growth from [WS₂] to [WSe₂]) and [WSe₂]—[WSe₂] (growth from [WSe₂] to [WSe₂]). For the angular interactions, each of the three dressed atoms that form the angle can either be [WS₂] or [WSe₂]. (B) Three different environments for dressed atoms on an interior corner of the WS₂/WSe₂ superlattice. Green arrows denote the growth direction in the TMD superlattice. (C) Theoretical simulation results for the $a_{i/j}$ and a_{\perp} distributions. The addition of angular coupling terms significantly reduces δ_{\perp} from 5.7 % to 1.3 %, in excellent agreement with the experimental observation of coherent epitaxy in both the parallel and perpendicular directions. Fig. S8. Electrical transport and electroluminescence of WSe₂/WS₂ *p-n* diodes. (A) Current-Voltage (I-V) curves for a WSe₂-WS₂ p-n diode under different V_{BG} showing a rectification ratio of 10^6 . (B) EL intensity (red) map overlaid with optical micrograph of the p-n diode device, showing the EL centered at WS₂-WSe₂ heterointerface (marked with dashed line). (C) EL spectra (red) under current I = 0.2, 0.5, and 1 μ A, respectively, together with PL spectrum (grey). Inset: EL intensity for corresponding current intensity, showing an exponential dependence. (C) EL spectra recorded under V_{BG} = -60 and -30 V, with fitted peaks (blue and orange) and the band diagram shown in inset. All curves are offset for clarity. Fig. S9. Electrical transport of WSe₂/WSe₂ double heterostructure transistors. (A) From top to bottom: symbol, schematic, band diagram of WSe₂-WSe₂-WSe₂ double heterostructure (DH), and an SEM image of a representative DH device with $d_{WS2} \approx 90$ nm. (B) *I-V* curves for a DH device with $d_{WS2} \approx 70$ nm under different V_{BG} . (C) *I-V* curves for three DH devices with $d_{WS2} \approx 70$, 90, and 130 nm, respectively. Fig. S10. PL spectra of WS₂/WSe₂ heterostructures. PL spectra of an incoherent WS₂/WSe₂ heterostructure (**A**) and three coherent WS₂/WSe₂ superlattices with $\rho = 2.4$ (**B**), 1.3 (**C**) and 0.1 (**D**). Insets show enlarged spectra for clarity. **Fig. S11.** Energetics of rippled WSe₂. (A) Schematic of the model for the flat-rippled configuration space in a strained WSe₂ monolayer grown on a SiO₂ substrate. (B) Stretching energy (E_s , upper left), bending energy (E_b , upper middle), elastic energy ($E_{el} = E_s + E_b$, upper right), interlayer van der Waals binding energy (E_{vdw} , lower left), and relative total energy ($E_{tot} = E_{el} + E_{vdw}$, lower middle) per WSe₂ as a function of the ripple height (A) for WSe₂ ripple shapes generated using the sinusoidal S_1 , S_2 , and S_4 transformations (see supplementary text for details). Lower right panel: ratio of three- to two-body interlayer vdW binding energy contributions, $|E_{vdw-3B}/E_{vdw-2B}|$, as a function of A for the various ripple shapes. Results for both vdW methods are presented here (see supplementary text for details). **Fig. S12. AFM images of WS₂/WSe₂ heterostructures.** (**A-C**) AFM phase images of WS₂/WSe₂ heterostructures with different d_{WSe2} of 30, 220, and 560 nm, respectively. Ripples are not continuous across the entire WSe₂ region in the superlattice with d_{WSe2} of 560 nm. (**D**) AFM height image of an incoherent WS₂/WSe₂ heterostructures showing no out-of-plane ripples. Inset: DF-TEM image of a similar sample showing the WS₂/WSe₂/WS₂ composition. **Fig. S13. Critical thickness.** Critical thickness as a function of lattice mismatches, for v = -0.2 (light gray), 0 (gray), and 0.2 (black), based on the People-Bean model. A critical thickness of 17 nm (v = -0.2), 9.8 nm (v = 0), and 5.4 nm (v = 0.2) is estimated for the WS₂/WSe₂ epitaxial system with lattice mismatch of 4%. Table S1. Supercell dimensions and growth time for different WS_2/WSe_2 superlattices. | Superlattice sample | $\{t_{WS2},t_{WSe2}\}$ $/\{min,min\}$ | $\{d_{\mathrm{WS2}},\!d_{\mathrm{WSe2}}\}$ $/\{nm,nm\}$ | tws2/twse2 | dws2/dwSe2 | |---------------------|---------------------------------------|---|------------|------------| | Fig. 1C, left | {4, 3) | {110, 40} | 1.33 | 2.75 | | Fig. 1C, right | {0.75, 7} | {30, 80} | 0.11 | 0.38 | | Fig. 2F | {2, 5.5} | {75, 60} | 0.36 | 1.25 | | Fig. 3B-I | {4, 3.5} | {120, 50} | 1.14 | 2.40 | | Fig. 3B-II | {1.5, 4} | {100, 80} | 0.38 | 1.25 | | Fig. 3B-III | {1, 4} | {70, 90} | 0.25 | 0.78 | | Fig. 3B-IV | {1,7} | {50, 100} | 0.14 | 0.50 | | Fig. 3B-V | {0.83, 40} | {60, 600} | 0.02 | 0.10 | #### References - 1. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO₃ multiferroic thin film heterostructures. *Science* **299**, 1719–1722 (2003). doi:10.1126/science.1080615 Medline - 2. D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, R. Uecker, Elastic strain engineering of ferroic oxides. *MRS Bull.* **39**, 118–130 (2014). doi:10.1557/mrs.2014.1 - 3. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, Quantum cascade laser. *Science* **264**, 553–556 (1994). doi:10.1126/science.264.5158.553 Medline - 4. S. Nakamura, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. *Science* **281**, 955–961 (1998). doi:10.1126/science.281.5379.956 Medline - 5. A. K. Geim, I. V. Grigorieva, Van der Waals heterostructures. *Nature* **499**, 419–425 (2013). doi:10.1038/nature12385 Medline - 6. D. Jariwala, T. J. Marks, M. C. Hersam, Mixed-dimensional van der Waals heterostructures. *Nat. Mater.* **16**, 170–181 (2017). doi:10.1038/nmat4703 Medline - 7. D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, P. M. Ajayan, K. Banerjee, A subthermionic tunnel field-effect transistor with an atomically thin channel. *Nature* **526**, 91–95 (2015). doi:10.1038/nature15387 Medline - 8. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. *Nat. Nanotechnol.* **7**, 699–712 (2012). doi:10.1038/nnano.2012.193 Medline - 9. X. Xu, W. Yao, D. Xiao, T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. *Nat. Phys.* **10**, 343–350 (2014). doi:10.1038/nphys2942 - 10. W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, Z. L. Wang, Piezoelectricity of single-atomic-layer MoS₂ for energy conversion and piezotronics. *Nature* **514**, 470–474 (2014). doi:10.1038/nature13792 Medline - 11. H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong, Z. J. Wong, Z. Ye, Y. Ye, X. Yin, X. Zhang, Observation of piezoelectricity in free-standing monolayer MoS₂. *Nat. Nanotechnol.* **10**, 151–155 (2015). doi:10.1038/nnano.2014.309 Medline - 12. K. F. Mak, J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. *Nat. Photonics* **10**, 216–226 (2016). doi:10.1038/nphoton.2015.282 - 13. X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, X. Duan, Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. *Nat. Nanotechnol.* **9**, 1024–1030 (2014). doi:10.1038/nnano.2014.222 Medline - 14. Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, P. M. - Ajayan, Vertical and in-plane heterostructures from WS₂/MoS₂ monolayers. *Nat. Mater.* **13**, 1135–1142 (2014). doi:10.1038/nmat4091 Medline - 15. C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, X. Xu, Lateral heterojunctions within monolayer MoSe₂-WSe₂ semiconductors. *Nat. Mater.* **13**, 1096–1101 (2014). doi:10.1038/nmat4064 Medline - 16. M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin, H.-L. Tang, M.-L. Tsai, C.-W. Chu, K.-H. Wei, J.-H. He, W.-H. Chang, K. Suenaga, L.-J. Li, Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. *Science* **349**, 524–528 (2015). doi:10.1126/science.aab4097 Medline - 17. K. Chen, X. Wan, J. Wen, W. Xie, Z. Kang, X. Zeng, H. Chen, J.-B. Xu, Electronic properties of MoS₂-WS₂ heterostructures synthesized with two-step lateral epitaxial strategy. *ACS Nano* **9**, 9868–9876 (2015). doi:10.1021/acsnano.5b03188 Medline - 18. Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, P. M. Ajayan, Two-step growth of two-dimensional WSe₂/MoSe₂ heterostructures. *Nano Lett.* **15**, 6135–6141 (2015). doi:10.1021/acs.nanolett.5b02423 Medline - 19. X. Q. Zhang, C. H. Lin, Y. W. Tseng, K. H. Huang, Y. H.
Lee, Synthesis of lateral heterostructures of semiconducting atomic layers. *Nano Lett.* **15**, 410–415 (2015). doi:10.1021/nl503744f Medline - H. Heo, J. H. Sung, G. Jin, J.-H. Ahn, K. Kim, M.-J. Lee, S. Cha, H. Choi, M.-H. Jo, Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. *Adv. Mater.* 27, 3803–3810 (2015). <a href="https://doi.org/doi - 21. K. Bogaert, S. Liu, J. Chesin, D. Titow, S. Gradečak, S. Garaj, Diffusion-mediated synthesis of MoS₂/WS₂ lateral heterostructures. *Nano Lett.* **16**, 5129–5134 (2016). doi:10.1021/acs.nanolett.6b02057 Medline - 22. K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C.-J. Kim, D. Muller, J. Park, High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. *Nature* **520**, 656–660 (2015). doi:10.1038/nature14417 Medline - 23. S. Helveg, J. V. Lauritsen, E. Laegsgaard, I. Stensgaard, J. K. Nørskov, B. S. Clausen, H. Topsøe, F. Besenbacher, Atomic-scale structure of single-layer MoS₂ nanoclusters. *Phys. Rev. Lett.* **84**, 951–954 (2000). doi:10.1103/PhysRevLett.84.951 Medline - 24. J. V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsøe, B. S. Clausen, E. Laegsgaard, F. Besenbacher, Size-dependent structure of MoS₂ nanocrystals. *Nat. Nanotechnol.* **2**, 53–58 (2007). doi:10.1038/nnano.2006.171 Medline - 25. M. W. Tate, P. Purohit, D. Chamberlain, K. X. Nguyen, R. Hovden, C. S. Chang, P. Deb, E. Turgut, J. T. Heron, D. G. Schlom, D. C. Ralph, G. D. Fuchs, K. S. Shanks, H. T. Philipp, D. A. Muller, S. M. Gruner, High dynamic range pixel array detector for scanning transmission electron microscopy. *Microsc. Microanal.* 22, 237–249 (2016). doi:10.1017/S1431927615015664 Medline - 26. P. Johari, V. B. Shenoy, Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. *ACS Nano* **6**, 5449–5456 (2012). doi:10.1021/nn301320r Medline - 27. Y. Wang, C. Cong, W. Yang, J. Shang, N. Peimyoo, Y. Chen, J. Kang, J. Wang, W. Huang, T. Yu, Strain-induced direct—indirect bandgap transition and phonon modulation in monolayer WS₂. *Nano Res.* **8**, 2562–2572 (2015). doi:10.1007/s12274-015-0762-6 - 28. R. Schmidt *et al.*, Reversible uniaxial strain tuning in atomically thin WSe2. *2D Mater.* **3**, 021011 (2016). - 29. R. Frisenda, M. Drüppel, R. Schmidt, S. Michaelis de Vasconcellos, D. Perez de Lara, R. Bratschitsch, M. Rohlfing, A. Castellanos-Gomez, Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides. *npj 2D Mater. Appl.* **1**, 10 (2017). doi:10.1038/s41699-017-0013-7 - 30. Y. Klein, E. Efrati, E. Sharon, Shaping of elastic sheets by prescription of non-Euclidean metrics. *Science* **315**, 1116–1120 (2007). doi:10.1126/science.1135994 Medline - 31. B. Davidovitch, R. D. Schroll, D. Vella, M. Adda-Bedia, E. A. Cerda, Prototypical model for tensional wrinkling in thin sheets. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 18227–18232 (2011). doi:10.1073/pnas.1108553108 Medline - 32. D. Nandwana, E. Ertekin, Ripples, strain, and misfit dislocations: Structure of graphene-boron nitride superlattice interfaces. *Nano Lett.* **15**, 1468–1475 (2015). doi:10.1021/nl505005t Medline - 33. A. Ambrosetti, N. Ferri, R. A. DiStasio Jr., A. Tkatchenko, Wavelike charge density fluctuations and van der Waals interactions at the nanoscale. *Science* **351**, 1171–1176 (2016). doi:10.1126/science.aae0509 Medline - 34. J. W. Matthews, A. E. Blakeslee, Defects in epitaxial multilayers: I. Misfit dislocations. *J. Cryst. Growth* **27**, 118–125 (1974). - 35. R. People, J. C. Bean, Calculation of critical layer thickness versus lattice mismatch for Ge_xSi_{1-x}/Si strained-layer heterostructures. *Appl. Phys. Lett.* **47**, 322–324 (1985). doi:10.1063/1.96206 - 36. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J.-C. Idrobo, P. M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. *Nat. Mater.* **12**, 754–759 (2013). <u>doi:10.1038/nmat3673</u> <u>Medline</u> - 37. D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gibertini, N. Marzari, O. Lopez Sanchez, Y.-C. Kung, D. Krasnozhon, M.-W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Radenovic, A. Kis, Large-area epitaxial monolayer MoS₂. *ACS Nano* **9**, 4611–4620 (2015). doi:10.1021/acsnano.5b01281 Medline - 38. D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G. R. Bhimanapati, S. M. Eichfeld, R. A. Burke, P. B. Shah, T. P. O'Regan, F. J. Crowne, A. G. Birdwell, J. A. Robinson, A. V. Davydov, T. G. Ivanov, Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride. *ACS Nano* **10**, 3580–3588 (2016). doi:10.1021/acsnano.5b08008 Medline - 39. A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G.-H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, J. C. Hone, Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. *Nat. Mater.* **12**, 554–561 (2013). doi:10.1038/nmat3633 Medline - 40. D. A. Muller, Y. Han, K. X. Nguyen, M. W. Tate, P. Purohit, S. Xie, J. Park, S. M. Gruner, Electron diffraction from a single atom and optimal signal detection. *Microsc. Microanal.* **22** (S3), 846–847 (2016). doi:10.1017/S1431927616005079 - 41. R. W. Havener, S.-Y. Ju, L. Brown, Z. Wang, M. Wojcik, C. S. Ruiz-Vargas, J. Park, Highthroughput graphene imaging on arbitrary substrates with widefield Raman spectroscopy. *ACS Nano* **6**, 373–380 (2012). doi:10.1021/nn2037169 Medline - 42. D. Cakir, F. M. Peeters, C. Sevik, Mechanical and thermal properties of h-MX₂ (M=Cr, Mo, W; X=O, S, Se, Te) monolayers: A comparative study. *Appl. Phys. Lett.* **104**, 203110 (2014). doi:10.1063/1.4879543 - 43. J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Band offsets and heterostructures of two-dimensional semiconductors. *Appl. Phys. Lett.* **102**, 012111 (2013). doi:10.1063/1.4774090 - 44. Atomistic ToolKit version 2014.3, QuantumWise A/S (www.quantumwise.com). - 45. C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. *Science* **321**, 385–388 (2008). doi:10.1126/science.1157996 Medline - 46. K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun, J. Suh, D. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, J. Wu, Elastic properties of chemical-vapor-deposited monolayer MoS₂, WS₂, and their bilayer heterostructures. *Nano Lett.* **14**, 5097–5103 (2014). doi:10.1021/nl501793a Medline - 47. D. Vella, J. Bico, A. Boudaoud, B. Roman, P. M. Reis, The macroscopic delamination of thin films from elastic substrates. *Proc. Natl. Acad. Sci. U.S.A.* **106**, 10901–10906 (2009). doi:10.1073/pnas.0902160106 Medline - 48. J. W. Jiang, The buckling of single-layer MoS₂ under uniaxial compression. *Nanotechnology* **25**, 355402 (2014). <u>doi:10.1088/0957-4484/25/35/355402</u> <u>Medline</u> - 49. Y. Huang, J. Wu, K. C. Hwang, Thickness of graphene and single-wall carbon nanotubes. *Phys. Rev. B* **74**, 245413 (2006). doi:10.1103/PhysRevB.74.245413 - 50. J.-W. Jiang, Z. Qi, H. S. Park, T. Rabczuk, Elastic bending modulus of single-layer molybdenum disulfide (MoS₂): Finite thickness effect. *Nanotechnology* **24**, 435705 (2013). doi:10.1088/0957-4484/24/43/435705 Medline - 51. D. Akinwande, C. J. Brennan, J. S. Bunch, P. Egberts, J. R. Felts, H. Gao, R. Huang, J.-S. Kim, T. Li, Y. Li, K. M. Liechti, N. Lu, H. S. Park, E. J. Reed, P. Wang, B. I. Yakobson, T. Zhang, Y.-W. Zhang, Y. Zhou, Y. Zhu, A review on mechanics and mechanical properties of 2D materials: Graphene and beyond. *Extrem. Mech. Lett.* 13, 42–77 (2017). doi:10.1016/j.eml.2017.01.008 - 52. J. Zhao, Q. Deng, T. H. Ly, G. H. Han, G. Sandeep, M. H. Rümmeli, Two-dimensional membrane as elastic shell with proof on the folds revealed by three-dimensional atomic mapping. *Nat.
Commun.* **6**, 8935 (2015). <u>doi:10.1038/ncomms9935</u> <u>Medline</u> - 53. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **132**, 154104 (2010). doi:10.1063/1.3382344 Medline - 54. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. *J. Comput. Chem.* **32**, 1456–1465 (2011). doi:10.1002/jcc.21759 Medline - 55. D. G. A. Smith, L. A. Burns, K. Patkowski, C. D. Sherrill, Revised damping parameters for the D3 dispersion correction to density functional theory. *J. Phys. Chem. Lett.* **7**, 2197–2203 (2016). doi:10.1021/acs.jpclett.6b00780 Medline - 56. G.-X. Zhang, A. Tkatchenko, J. Paier, H. Appel, M. Scheffler, Van der Waals interactions in ionic and semiconductor solids. *Phys. Rev. Lett.* **107**, 245501 (2011). doi:10.1103/PhysRevLett.107.245501 Medline - 57. V. G. Ruiz, W. Liu, E. Zojer, M. Scheffler, A. Tkatchenko, Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems. *Phys. Rev. Lett.* **108**, 146103 (2012). doi:10.1103/PhysRevLett.108.146103 Medline - 58. A. Tkatchenko, M. Scheffler, Accurate molecular van der Waals interactions from groundstate electron density and free-atom reference data. *Phys. Rev. Lett.* **102**, 073005 (2009). doi:10.1103/PhysRevLett.102.073005 Medline - 59. O. A. von Lilienfeld, A. Tkatchenko, Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids. *J. Chem. Phys.* **132**, 234109 (2010). doi:10.1063/1.3432765 Medline - 60. Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, K.-T. Yong, Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. *Sci. Rep.* **6**, 28190 (2016). doi:10.1038/srep28190 Medline - 61. J. E. Ayers, Mismatched Heteroepitaxial Growth and Strain Relaxation, in *Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization* (CRC Press, 2007), pp. 161–248.